rss · Четвер, 14.12.2017, 23:41

Опитування

Будинок Культури
1. Необхідний в Червоному
2. Мені це не цікаво
3. Замість БК - магазин
4. Є інші заклади, там краще
5. Надам фінансову допомогу
6. Не потрібен Червоному
7. Маю спонсора на ремонт
Всього відповідей: 41
Сторінка 1 з 11
Модератор форуму: Shooler, lusi 
Форум селища міського типу Червоне, Червоне - зробимо кращим »  Школопедія (Школопедия) » Біологія » 11 клас - Тема 02: Закономірності спадковості. (11 клас - Тема 02: Закономірності спадковості.)
11 клас - Тема 02: Закономірності спадковості.
ShoolerДата: Неділя, 12.04.2009, 23:01 | Повідомлення № 1
Супермодератор
Група: Модератори
Повідомлень: 3529
х-статус:
Veni! Vidi! Vici!

11 клас - Тема 2: Закономірності спадковості.

Основні поняття генетики.
Методи генетичних досліджень.
Закони Г. Менделя, їх статистичний характер і цитологічні основи. Хромосомна теорія спадковості. Зчеплене спадкування. Взаємодія генів. Позаядерна спадковість.



Я - волк! И вожака хочу я трон.
Ведь жизнь имеет волчий нрав.
В ней справедливейший закон -
Кто всех сильнее тот и прав!


Повідомлення відредактовано Shooler - Неділя, 15.11.2009, 16:07
 
ShoolerДата: Понеділок, 19.10.2009, 01:15 | Повідомлення № 2
Супермодератор
Група: Модератори
Повідомлень: 3529
х-статус:
Veni! Vidi! Vici!

Генетика. Методи генетичних досліджень

Генетика — наука про закономірності спадковості та мінливості організмів.

Це відносно молода галузь біології. Датою її народження вважають 1900 рік, коли три ботаніки, які проводили досліди по гібридизації рослин - голландець Г.де Фріз, німець К.Корренс та австрієць Е.Чермак, незалежно один від одного знайшли забуту працю чеського дослідника Грегора Менделя «Досліди над рослинними гібридами», видану в 1865 році.


Грегор Мендель

Вчені були вражені тим, наскільки наслідки їхніх дослідів наближались до отриманих Г.Менделем. Згодом закони спадковості, встановлені Г.Менделем, сприйняли науковці різних країн, а ретельні дослідження довели їхній універсальний характер.

Назву «генетика» запропонував англійський учений У.Бетсон у 1906 році. Новий етап у розвитку генетики пов'язаний з ім'ям ви­датного американського генетика Т.Х.Моргана та його учнів. Підсумком їхніх досліджень стало створення хромосомної теорії спадковості, яка вплинула на подальший розвиток не лише генетики, але й біології у цілому.

Основні генетичні поняття.
Як вам відомо, елементарною одиницею спадковості є ген. Ген - це ділянка молекули нуклеїнової кислоти, яка визначає спадкові ознаки організмів. Він кодує первинну структуру молекул поліпептиду, білка, певного типу РНК або ж взаємодіє з регуляторним білком. Гени, які несуть спадкову інформацію про певні ознаки (наприклад, розміри організмів, колір волосся, очей, форму плодів), можуть перебувати у різних станах (алелях). Алельні гени — це гени, що перебувають у різних станах, але займають одне й те саме місце (люкус) в хромосомах однієї пари (гомологічних хромосомах) та визначають різні стани певної ознаки (високий чи низький зріст, руде чи чорне волосся, блакитні чи карі очі, овальна чи куляста форма плоду тощо).

Алельні гени можуть бути домінантними чи рецесивними. Алель, яка в присутності іншої завжди проявляється у формі кодованого нею стану ознаки, називається - домінантною, а та, що не проявляється — рецесивною . Явище пригнічення прояву однієї алелі іншою називається домінуванням (від лат. домінатіс — панівний). Наприклад, у помідорів алель, що зумовлює червоне забар­влення плодів, домінує над алеллю жовтого; у людини алель, що визначає карий колір очей, домінує над алеллю блакитного. Домінантні алелі позначають великими латинськими літерами (А, В, С, D тощо), а відповідні їм рецесивні — малими (a, b, c, d тощо).

Певний ген може бути представлений не лише двома, а й значно більшою кількістю алелей (десятки, іноді сотні). Але при цьому слід пам'ятати, що в диплоїдних клітинах одночасно присутні лише два алельних гени, а в гаплоїдних — один. Наприклад, у людини три алельних гени (їх позначають ІО, ІА, ІВ) в різних поєднаннях визначають чотири групи крові: першу (ІОІО), другу ( ІА або ІАІО), третю ( ІВІВ або ІО) та четверту (ІАІВ). Існування різних алелей одного гена забезпечує комбінативну мінливість, бо різні поєднання алелей, одержаних від батьків, спричинюють прояв певних станів ознак у нащадків.

Сукупність генетичної інформації, закодованої в генах клітини організму, називається генотипом (від грец. генос — рід, поход­ження і типос — відбиток). Унаслідок взаємодії генотипу з чинниками довкілля формується фенотип (від грец. фаіно — являю) — сукупність усіх ознак і властивостей організму.

Отже, предметом генетичних досліджень е явища спадковості й мінливості організмів. Спадковість - це властивість живих організмів передавати свої ознаки й особливості онтогенезу потомкам забезпечуючи спадкоємність поколінь організмів. Мінливість – здатність живих організмів набувати нових ознак та їхніх станів у процесі індивідуального розвитку. Спадковість і мінливість є протилежними властивостями живих організмів. Завдяки спадковості нащадки подібні до батьків, тобто зберігається стабільність біологічних видів. Мінливість забезпечує появу нових ознак та їхніх станів, завдяки чому відбуваються видоутворення та історичний розвиток біосфери в цілому.

Методи генетичних досліджень.
Генетичні дослідження здійснюють у кількох основних напрямах: вивчення матеріальних носіїв спадкової інформації — генів, а також закономірностей її зберігання і передачі нащадкам; дослідження залежності проявів спадкової інформації у фенотипі від певних умов довкілля; встановлення причин змін спадкової інформації та механізмів їх виникнення; вивчення генетичних процесів, які відбуваються в популяціях організмів.

Результати генетичних досліджень проблем спадковості й мінливості є теоретичною базою для вирішення практичних питань. Ос­новою сучасної селекції (науки про створення нових порід і сортів) слугують уявлення про генетичні наслідки різних типів схрещування, вплив штучного добору на спадкові ознаки організмів, значення чинників довкілля для розвитку ознак тощо. Головні напрями медичної генетики — профілактика і лікування спадкових захворювань, дослідження мутагенних факторів з метою захисту від них генотипу людини тощо. Генетика є теоретичною базою і для генетичної (генної) інженерії (штучний синтез генів, виділення генів з організму, перенесення генів з одних організмів в інші тощо).

Методи генетичних досліджень. У вирішенні теоретичних і практичних генетичних проблем залежно від рівня організації живої матерії (молекулярний, клітинний, організмовий, популяційно-видовий) учені застосовують відповідні методи досліджень.

Гібридологічний метод, застосований Г.Менделем, полягає в схрещуванні (гібридизація) організмів, які відрізняються за певними станами однієї чи кількох спадкових ознак. Нащадків, одержаних від такого схрещування, називають гібридами (від грец. гібрида — Суміш). Гібридизація лежить в основі гібридологічного аналізу - дослідження характеру успадкування станів ознак за до­помогою системи схрещувань.

Схрещування буває моногібридним, дигібридним і полігібридним. Моногібридне схрещування — це поєднання батьківських форм, які відрізняються різними станами лише однієї спадкової ознаки (наприклад, кольором насіння); дигібридне - двох ознак (на­приклад, кольором насіння та структурою його поверхні), полігібридне — трьох і більше.

Генеалогічний метод полягає у вивченні родоводів організмів. Це дає змогу простежити характер успадкування різних станів певних ознак у ряді поколінь. Він широко застосовується в медичній генетиці, селекції тощо. За його допомогою встановлюють генотип особин і вираховують ймовірність прояву того чи іншого стану ознаки у майбутніх нащадків.

Родоводи складають у вигляді схем за певними правилами: організм жіночої статі позначають колом, чоловічої - квадратом. Позначення особин одного покоління розташовують у рядок і з'єднують між собою горизонтальними лініями, а батьків і нащадків - вертикальною. На мал.72 представлена частина родоводу англійської королеви Вікторії, серед нащадків якої були і російські імператори. досліджуючи цей родовід, можна простежити успадкування такого захворювання, як гемофілія (незсідання крові).

Популяційно-статистичний метод дає можливість вивчати ти частоти зустрічальності алелей у популяціях організмів, а також генетичну структуру популяцій. Крім генетики популяцій, його застосовують й у медичній генетиці для вивчення поширення певних алелей серед людей (головним чином тих, які визначають ті чи інші спадкові захворювання). Для цього вибірково досліджують частину населення певної території і статистичне обробляють одержані дані.

Наприклад, за допомогою цієї методики було виявлено, що алель, яка зумовлює дальтонізм (порушення сприйняття кольорів), трапляється у 13% жінок (з них хвороба проявляється лише у 0,5%) та у 7% чоловіків (хворі всі).

Цитогенетичний метод ґрунтується на дослідженні особливостей хромосомного набору (каріотипу) організмів . Вивчення каріотипу дає змогу виявляти мутації, пов’язані зі зміною як кількості хромосом, так і структури окремих із них. Каріотип досліджують у клітинах на стадії метафази, бо в цей період клітинного циклу структура хромосом виражена найчіткіше.

Цей метод застосовують і в систематиці організмів (каріосистематика). Так, багато видів-двійниюв (видів, яких важко, а іноді навіть неможливо розпізнати за іншими особливостями) розрізняють за хромосомним набором. Такі випадки відомі серед комах, земноводних, гризунів тощо. Наприклад, у 30-ті роки XX сторіччя вчені звернули увагу на різну частоту захворювань малярією у розташованих поруч місцевостях. Дослідження каріотипу малярійного комара показало, що це не один вид, як вважали раніше, а комплекс видів-двійників, одні з яких переносять збудників малярії, а інші - ні.

Біохімічні методи використовують для діагностики спадкових захворювань, пов'язаних із порушенням обміну речовин. За їхньою допомогою виявляють білки, а також проміжні продукти обміну, невластиві даному організмові, що свідчить про наявність змінених (мутантних) генів. Відомо понад 500 спадкових захворювань людини, зумовлених такими генами (наприклад, цукровий діабет).

Близнюковий метод полягає у вивченні однояйцевих близнят (організмів, які походять з однієї зиготи). Однояйцеві близнята за­вжди однієї статі, бо мають однакові генотипи. Досліджуючи такі організми, можна з'ясувати роль чинників довкілля у формуванні фенотипу особин: різний характер їхнього впливу зумовлює розбіжності у прояву тих чи інших станів певних ознак.

Окрему групу становлять методи генетичної інженерії, за допомогою яких учені виділяють із організмів окремі гени або синтезують їх штучно, перебудовують певні гени, вводять їх у геном іншої клітини або організму. Геном — сукупність генів гаплоїдного набору хромосом організмів певного виду. Крім того, вчені можуть сполучати гени різних видів в одній клітині, тобто поєднувати в одній особині спадкові ознаки, притаманні цим видам.



Я - волк! И вожака хочу я трон.
Ведь жизнь имеет волчий нрав.
В ней справедливейший закон -
Кто всех сильнее тот и прав!
 
ShoolerДата: Понеділок, 19.10.2009, 01:35 | Повідомлення № 3
Супермодератор
Група: Модератори
Повідомлень: 3529
х-статус:
Veni! Vidi! Vici!

Работы Г. Менделя и их значение

Честь открытия основных закономерностей наследования признаков, наблюдающихся при гибридизации, принадлежит Грегору (Иоганну) Менделю (1822–1884) – выдающемуся австрийскому естествоиспытателю, настоятелю августинского монастыря Св.Фомы в г. Брюнне (ныне г. Брно в Чехии). <Биографическая справка>

Главной заслугой Г. Менделя является то, что для описания характера расщепления он впервые применил количественные методы, основанные на точном подсчете большого числа потомков с контрастирующими вариантами признаков. Г. Мендель выдвинул и экспериментально обосновал гипотезу о наследственной передаче дискретных наследственных факторов. В его работах, выполнявшихся в период с 1856 по 1863 г., были раскрыты основы законов наследственности. Результаты своих наблюдений Г. Мендель изложил в брошюре «Опыты над растительными гибридами» (1865).

Мендель следующим образом формулировал задачу своего исследования. «До сих пор,– отмечал он во «Вступительных замечаниях» к своей работе,– не удалось установить всеобщего закона образования и развития гибридов… Окончательное решение этого вопроса может быть достигнуто только тогда, когда будут произведены детальные опыты в различнейших растительных семействах. Кто пересмотрит работы в этой области, тот убедится, что среди многочисленных опытов ни один не был произведен в том объеме и таким образом, чтобы можно было определить число различных форм, в которых появляются потомки гибридов, с достоверностью распределить эти формы по отдельным поколениям и установить их взаимные численные отношения».

Первое, на что Мендель обратил внимание, – это выбор объекта. Для своих исследований Мендель выбрал удобный объект – чистые линии (сорта) гороха посевного (Pisum sativum L.), различающиеся по одному или немногим признакам. Горох как модельный объект генетических исследований характеризуется следующими особенностями:

1. Это широко распространенное однолетнее растение из семейства Бобовые (Мотыльковые) с относительно коротким жизненным циклом, выращивание которого не вызывает затруднений.

2. Горох – строгий самоопылитель, что снижает вероятность заноса нежелательной посторонней пыльцы. Цветки у гороха мотылькового типа (с парусом, веслами и лодочкой); в то же время строение цветка гороха таково, что техника скрещивание растений относительно проста.

3. Существует множество сортов гороха, различающихся по одному, двум, трем и четырем наследуемым признакам.

Едва ли не самым существенным во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Мендель впервые осознал, что, только начав с самого простого случая – различия родителей по одному-единственному признаку – и постепенно усложняя задачу, можно надеяться распутать клубок фактов. Строгая математичность его мышления выявилась здесь с особенной силой. Именно такой подход к постановке опытов позволил Менделю четко планировать дальнейшее усложнение исходных данных. Он не только точно определял, к какому этапу работы следует перейти, но и математически строго предсказывал будущий результат. В этом отношении Мендель стоял выше всех современных ему биологов, изучавших явления наследственности уже в XX в.

Описание опытов Менделя.

Мендель проводил свои опыты в монастырском саду на небольшом участке площадью 35×7 м. Первоначально он выписал из различных семеноводческих ферм 34 сорта гороха. В течение двух лет Мендель высевал эти сорта на отдельных делянках и проверял, не засорены ли полученные сорта, сохраняют ли они свои признаки неизменными при размножении без скрещиваний. После такого рода проверки он отобрал для экспериментов 22 сорта.

Мендель начал с опытов по скрещиванию сортов гороха, различающихся по одному признаку (моногибридное скрещивание). Для этих опытов он использовал сорта гороха, различающиеся по ряду признаков:



Признаки



Альтернативные варианты признаков



Доминантные



Рецессивные



Форма зрелых семян



Круглые



Морщинистые



Окраска семядолей



Желтая



Зеленая



Окраска семенной кожуры



Серая



Белая (полупрозрачная)



Окраска цветков



Пурпурные



Белые



Форма зрелых бобов



Выпуклые



С перехватами



Окраска незрелых бобов



Зеленые



Желтые



Расположение цветков



Пазушное



Верхушечное



Высота растения



Высокие



Низкие



Наличие пергаментного слоя



Имеется



Отсутствует


Рассмотрим некоторые из опытов Менделя подробнее.

Опыт 1. Скрещивание сортов, различающихся по окраске цветков.

Первый год. На двух смежных делянках выращивалось два сорта гороха, различающихся по окраске цветков: пурпурноцветковый и белоцветковый. В фазе бутонизации Мендель произвёл кастрацию части цветков на пурпурноцветковых растениях: он аккуратно разрывал лодочку и удалял все 10 тычинок. Затем на кастрированный цветок надевался изолятор (трубка из пергамента), чтобы исключить случайный занос пыльцы. Через несколько дней (в фазе цветения), когда пестики кастрированных цветков становились готовыми к восприятию пыльцы, Мендель произвёл скрещивание: он снял изоляторы с кастрированных цветков пурпурноцветкового сорта и нанёс на рыльца их пестиков пыльцу с цветков белоцветкового сорта; после этого на опыленные цветки вновь надевались изоляторы. После завязывания плодов изоляторы снимались. После созревания семян Мендель собрал их с каждого искусственно опыленного растения в отдельную тару.

Второй год. На следующий год Мендель вырастил из собранных семян гибридные растения – гибридов первого поколения. На всех этих растениях образовались пурпурные цветки, несмотря на то, что материнские растения были опылены пыльцой с белоцветкового сорта. Мендель предоставил этим гибридам возможность неконтролируемого опыления (самоопыления). После созревания семян Мендель вновь собрал их с каждого растения в отдельную тару.

Третий год.
На третий год Мендель вырастил из собранных семян гибридов второго поколения. Часть этих растений дала только пурпурные цветки, а часть только белые, причем пурпурноцветковых растений оказалось примерно в 3 раза больше, чем белоцветковых.

Опыт 2. Скрещивание сортов, различающихся по окраске семядолей.

Особенность этого опыта в том, что окраска горошин (при полупрозрачной семенной кожуре) определяется окраска семядолей, а семядоли являются частью зародыша – нового растения, сформировавшегося под защитой материнского растения.

Первый год.
На двух смежных делянках выращивалось два сорта гороха, различающихся по окраске семядолей: желтосемяный и зеленосемянный. Мендель произвёл кастрацию части цветков на растениях, выращенных из желтых семян, с последующей изоляцией кастрированных цветков. В фазе цветения Мендель произвел скрещивание: на рыльца пестиков кастрированных цветков он нанес пыльцу с цветков растений, выращенных из зеленых семян. Искусственно опыленные цветки дали плоды только с желтыми семенами, несмотря на то, что материнские растения были опылены пыльцой с зеленосемянного сорта (еще раз подчеркнем, что окраска этих семян определялась окраской семядолей зародышей, которые уже являются гибридами первого поколения). Полученные семена Мендель также собрал с каждого искусственно опыленного растения в отдельную тару.

Второй год. На следующий год Мендель вырастил из собранных семян гибридные растения – гибридов первого поколения. Как и в предыдущем опыте, он предоставил этим гибридам возможность неконтролируемого опыления (самоопыления). После созревания плодов Мендель обнаружил, что внутри каждого боба встречаются и желтые, и зеленые горошины. Мендель подсчитал общее количество горошин каждого цвета и обнаружил, что желтых горошин примерно в 3 раза больше, чем зеленых.

Таким образом, опыты с изучением морфологии семян (окраски их семядолей, формы поверхности семян) позволяют получить результаты уже на второй год.

Скрещивая растения, различающиеся и по другим признакам, Мендель во всех без исключения опытах получил аналогичные результаты: всегда в первом гибридном поколении проявлялся признак только одного из родительских сортов, а во втором поколении наблюдалось расщепление в соотношении 3:1.

На основании своих экспериментов Мендель ввел понятие доминантного и рецессивного признаков. Доминантные признаки переходят в гибридные растения совершенно неизменными или почти неизменными, а рецессивные становятся при гибридизации скрытыми. Заметим, что к подобным выводам пришли французские естествоиспытатели Сажрэ и Нодэн, которые работали с тыквенными растениями, имеющими раздельнополые цветки. Однако величайшая заслуга Менделя в том, что он впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков.

Для дальнейшего анализа наследственной природы полученных гибридов Мендель проводил скрещивания между сортами, различающимся по двум, трем и более признакам, то есть проводит дигибридное и тригибридное скрещивания. Далее он изучил еще несколько поколений гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование следующие обобщения фундаментальной важности:

1. Явление неравнозначности наследственных элементарных признаков (доминантных и рецессивных), отмеченное Сажрэ и Нодэном.

2. Явление расщепления признаков гибридных организмов в результате их последующих скрещиваний. Были установлены количественные закономерности расщепления.

3. Обнаружение не только количественных закономерностей расщепления по внешним, морфологическим признакам, но и определение соотношения доминантных и рецессивных задатков среди форм, с виду не отличимых от доминантных, но являющихся смешанными (гетерозиготными) по своей природе. Правильность последнего положения Мендель подтвердил, кроме того, путем возвратных скрещиваний гибридов первого поколения с родительскими формами.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками (наследственными факторами) и определяемыми ими признаками организма. Мендель ввел понятие дискретного наследственного задатка, не зависящего в своем проявлении от других задатков. Эти задатки сосредоточены, по мнению Менделя, в зачатковых (яйцевых) и пыльцевых клетках (гаметах). Каждая гамета несет по одному задатку. Во время оплодотворения гаметы сливаются, формируя зиготу; при этом в зависимости от сорта гамет, возникшая из них зигота получит те или иные наследственные задатки. За счет перекомбинации задатков при скрещиваниях образуются зиготы, несущие новое сочетание задатков, чем и обусловливаются различия между индивидуумами.


Статистический характер закономерностей расщепления

Мендель особенно подчеркивал среднестатистический характер выявленных им закономерностей: количественные закономерности расщепления среди гибридов второго поколения выявляются только при достаточно большом числе наблюдений.

Изучая расщепления по одному признаку, Мендель получил следующие результаты. При анализе расщепления по форме семян из 7324 горошин 5474 были круглыми, а 1850 – морщинистыми (2,99 : 1,01). При анализе расщепления по окраске семян из 8023 горошин 6022 были желтыми, а 2001 – зелеными (расщепление 3,002 : 0,998. Фактические расщепления оказались близкими к соотношению 3 : 1.

При анализе расщепления по двум признакам – форме и окраске горошин – Мендель получил 556 горошин. Из них 423 горошины были круглыми, 133 – морщинистыми (3,043 : 0,957); 416 горошин были желтыми, 140 – зелеными (2,993 : 1,007). При анализе расщепления одновременно по двум признакам 315 горошин были круглыми желтыми, 101 – морщинистыми желтыми, 108 – круглыми зелеными, 35 – морщинистыми зелеными (расщепление 9,02 : 2,89 : 3,09 : 1,00, что близко к соотношению 9 : 3 : 3 : 1).

Скрещивая гибридные пурпурноцветковые растения с белоцветковыми, Мендель получил 85 растений с пурпурными цветками и 81 – с белыми (1,024 : 0,976, что близко к соотношению 1 : 1).

Принципы гибридологического анализа, разработанные Г. Менделем

1 Получение константных форм, не дающих расщепления при воспроизведении.

2 Анализ наследования отдельных пар альтернативных признаков, или анализ наследования признаков, представленных двумя взаимоисключающими вариантами.

3 Количественный учет форм, выщепляющихся в ходе последовательных скрещиваний.

4 Индивидуальный анализ потомства от каждой родительской особи.

Основные закономерности наследования признаков, установленные Менделем

1 При скрещивании чистосортных растений все гибриды первого поколения единообразны и характеризуются доминантным вариантом признака.

2 При скрещивании гибридов первого поколения между собой в их потомстве наблюдается расщепление в соотношении – 3 части растений с доминантным вариантом признака : 1 часть растений с рецессивным вариантом.

3 Отдельные признаки наследуются независимо друг от друга.

В дальнейшем закономерности наследования признаков, выявленные Менделем, получили название законов Менделя.

Дальнейшая судьба работ Менделя

Выявив основные закономерности наследования признаков у гороха, Мендель (по совету профессора Берлинского университета Карла Негели) решил перепроверить полученные им результаты на дикорастущем растении – ястребинке. Однако опыты Менделя по получению константных форм у ястребинки оказались безуспешными. (В настоящее время установлено, что ястребинка – это очень неудобный объект для изучения наследования признаков, поскольку часть семян у этого растения образуется апомиктически, т.е. без оплодотворения.) В итоге Мендель прекратил свои исследования, и его работы оказались полузабытыми (результаты экспериментов Менделя в течение 35 лет цитировались всего лишь 8 раз).

Только к началу XX столетия три исследователя из разных стран – Г. Де Фриз (Голландия), К. Корренс (Германия), Э. Чермак (Австрия) – независимо друг от друга и не зная о работах Менделя, повторили опыты Менделя на горохе и других объектах и подтвердили правильность выводов, сделанных Менделем. 1900 год считается годом переоткрытия законов Менделя и годом рождения современной генетики.

Сам Мендель не мог дать четкую формулировку своих законов, поскольку в 1860-е гг. еще не были открыты хромосомы, не были известны такие явления как мейоз, спорогенез и гаметогенез, гаплоидность гамет и диплоидность зигот. Поэтому современные формулировки законов Менделя были даны лишь в XX веке.

Современные формулировки законов Менделя

1-й закон Менделя – закон единообразия гибридов первого поколения.

При скрещивании гомозигот все гибриды первого поколения единообразны по генотипу и фенотипу.

Правило чистоты гамет.

При гаметогенезе у гетерозигот в каждую из гамет с равной вероятностью переходит один из двух аллелей.

2-й закон Менделя – закон расщепления.

При моногибридном скрещивании гетерозигот примерно четвертая часть их потомков обладает рецессивным вариантом признака.

3-й закон Менделя – закон независимого наследования отдельных признаков.

Отдельные признаки наследуются независимо друг от друга, если гены, отвечающие за развитие этих признаков, не сцеплены между собой.


Условия выполнения законов Менделя

Законы И. Менделя являются фундаментальными законами генетики (подобно законам Ньютона в физике). Однако они (как и любые законы природы) выполняются только при наличии определенных условий:

1 Подразумевается моногенное наследование. Это означает, что за один признак отвечает один ген. Тогда выстраивается логическая цепочка: «один ген – один полипептид; один полипептид – один фермент; один фермент – одна реакция; одна реакция – один признак».

2 Гены, отвечающие за развитие разных признаков (например, А и В) не влияют друг на друга, не взаимодействуют между собой.

3 Гены, отвечающие за развитие разных признаков (например, А и В), не сцеплены между собой, а сочетания их аллелей образуются случайным образом в равных соотношениях.

4 Выполняется правило чистоты гамет (правило чистоты гамет не является законом).

5 Равновероятность встречи гамет и образования зигот.

6 Жизнеспособность особей не зависит от их генотипа и фенотипа.

7 Законы Менделя носят статистический характер: отклонение от теоретически ожидаемого расщепления тем меньше, чем больше число наблюдений.

8 Каждому генотипу соответствует определенный фенотип (100%-ная пенетрантность признаков).

9 У всех особей с данным генотипом признак выражен в равной степени (100%-ная экспрессивность признаков).

10 Изучаемые признаки не сцеплены с полом.

При несоблюдении перечисленных условий наследование признаков приобретает более сложный характер.



Я - волк! И вожака хочу я трон.
Ведь жизнь имеет волчий нрав.
В ней справедливейший закон -
Кто всех сильнее тот и прав!
 
Форум селища міського типу Червоне, Червоне - зробимо кращим »  Школопедія (Школопедия) » Біологія » 11 клас - Тема 02: Закономірності спадковості. (11 клас - Тема 02: Закономірності спадковості.)
Сторінка 1 з 11
Пошук:


Оплата будь-яких послуг через інтернет

Вхід

Логін:
Пароль:

Інформація

Ваш IP: 54.226.227.175
Браузер:

Cайт живе: